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A) What physics are you trying to model and analyse? (Surely that is crazy!) 
We are trying to analyse the heat transfer through a hot long rectangular rod when quenched in a cold fluid. To 
analyse, we are aiming to model the temperature distribution through the rod, as it changes in time. The rod is a 
composition of two different materials; in this case we chose brick and steel (AISI 1010) although it can be easily 
changed to fit any composition. Steel rods are commonly used in mechanical engineering and industrial applications, 
where quenching is a commonly used technique to make them stronger and harder. The rod is long enough that the 
heat transfer along the longest length can be neglected, so the heat transfer was modelled in two space dimensions 
and time. The square cross-sectional length of the rod is 𝐿 (1m for the model shown here). The location and area of 
the secondary material was chosen to be a small rectangle, slightly offset from the centre, however, can be adjusted 
accordingly to model different problems. The rod is cooled for a total time of 𝑡 seconds. 

B) What PDE are you trying to solve? (write the PDE) 
Assuming uniform density, uniform specific heat, no internal heat sources: 
𝜕𝑇

𝜕𝑡
= 𝛼 (

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2)   2D Heat diffusion equation (source-free). (3rd order Parabolic PDE) 

 
C) Boundary value and/or initial values for my specific problem: (be consistent with what you wrote in A) 
The temperature distribution in the rod is described as 𝑇𝑥,𝑦,𝑡 where x and y are the coordinates in space, and t in 

time. 
Initially, the rod is removed from a hot source, and it is at a uniform temperature of 900°C. This can be altered in the 
code. 

𝑇𝑥,𝑦,0 = 1173 𝐾 

The boundaries at the edges of the rod are convective heat transfer boundary conditions. The 4 boundaries exposed 
to the fluid of temperature, Tf have the following boundary conditions:  

Left edge:    −𝑘
𝜕𝑇

𝜕𝑥
|

𝑥=0
= ℎ(𝑇𝑓 − 𝑇0,𝑦,𝑡) Bottom edge: −𝑘

𝜕𝑇

𝜕𝑦
|

𝑦=0
= ℎ(𝑇𝑓 − 𝑇𝑥,0,𝑡) 

Right edge:     𝑘
𝜕𝑇

𝜕𝑥
|

𝑥=𝐿
= ℎ(𝑇𝑓 − 𝑇𝐿,𝑦,𝑡) Top edge:           𝑘

𝜕𝑇

𝜕𝑦
|

𝑦=𝐿
= ℎ(𝑇𝑓 − 𝑇𝑥,𝐿,𝑡) 

 

E) I am going to discretise my PDE as the following: 
Discretised space and time domains: 

𝑁=number of nodes in x or y domain Where for a square grid, ∆𝑥 = ∆𝑦 = 𝐿/(𝑁 − 1), ∆𝑥 = mesh grid 
𝑥𝑖 = 𝑖 × ∆𝑥,    𝑖 = 0, 1, … , 𝑁 − 1  
𝑦𝑗 = 𝑗 × ∆𝑥, 𝑗 = 0, 1, … , 𝑁 − 1  

𝑟=number of time nodes where, ∆𝑡 = 𝑡/(𝑟 − 1)  
𝑡𝑘 = 𝑘∆𝑡, 𝑘 = 0, 1, … , 𝑟 − 1  

 

Discretising boundary conditions, defining 𝑔 =
𝑘

ℎ∆𝑥
:  

 

Left edge: 
(..difference)  ℎ(𝑇0,𝑗

𝑘+1 − 𝑇𝑓) = 𝑘 (
𝑇1,𝑗

𝑘 − 𝑇0,𝑗
𝑘+1

∆𝑥
) ⇒ 𝑇0,𝑗

𝑘+1 = (
1

1 + 𝑔
) (𝑇𝑓 + 𝑔𝑇1,𝑗

𝑘 ) 

Right edge: 
(.. difference) ℎ(𝑇𝑓 − 𝑇𝑁−1,𝑗

𝑘+1 ) = 𝑘 (
𝑇𝑁−1,𝑗

𝑘+1 − 𝑇𝑁−2,𝑗
𝑘

∆𝑥
) ⇒ 𝑇𝑁−1,𝑗

𝑘+1 = (
1

1 + 𝑔
) (𝑇𝑓 + 𝑔𝑇𝑁−2,𝑗

𝑘 ) 

Bottom edge: 
(.. difference) ℎ(𝑇𝑖,0

𝑘+1 − 𝑇𝑓) = 𝑘 (
𝑇𝑖,1

𝑘 − 𝑇𝑖,0
𝑘+1

∆𝑥
) ⇒ 𝑇𝑖,0

𝑘+1 = (
1

1 + 𝑔
) (𝑇𝑓 + 𝑔𝑇𝑖,1

𝑘 ) 

Top edge: 
(.. difference) ℎ(𝑇𝑓 − 𝑇𝑖,𝑁−1

𝑘+1 ) = 𝑘 (
𝑇𝑖,𝑁−1

𝑘+1 − 𝑇𝑖,𝑁−2
𝑘

∆𝑥
) ⇒ 𝑇𝑖,𝑁−1

𝑘+1 = (
1

1 + 𝑔
) (𝑇𝑓 + 𝑔𝑇𝑖,𝑁−2

𝑘 ) 

 

D) What numerical method are you going to deploy and why? 
We chose to use explicit methods because it is a fast and computationally efficient method. We used the finite 
difference method and the derivatives were calculated using central difference for our PDE. We also used forward 
difference and backward difference for our boundary conditions. These choices were made mainly to have an 
algorithm as simple as possible to make it easy to alter for different materials, shapes and sizes. 
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 E) I am going to discretise my PDE as the following (cont…) 
Discretising PDE using explicit method and replacing partial derivatives using finite difference (central in space) 
(forward in time): 

𝑇𝑖,𝑗
𝑘+1 − 𝑇𝑖,𝑗

𝑘

∆𝑡
= 𝛼 [(

𝑇𝑖+1,𝑗
𝑘 − 2𝑇𝑖,𝑗

𝑘 + 𝑇𝑖−1,𝑗
𝑘

∆𝑥2
) + (

𝑇𝑖,𝑗+1
𝑘 − 2𝑇𝑖,𝑗

𝑘 + 𝑇𝑖,𝑗−1
𝑘

∆𝑥2
)] 

⇒ 𝑇𝑖,𝑗
𝑘+1 = 𝑇𝑖,𝑗

𝑘 +
𝛼Δ𝑡

Δ𝑥2 
[(𝑇𝑖+1,𝑗

𝑘 − 2𝑇𝑖,𝑗
𝑘 + 𝑇𝑖−1,𝑗

𝑘 ) + (𝑇𝑖,𝑗+1
𝑘 − 2𝑇𝑖,𝑗

𝑘 + 𝑇𝑖,𝑗−1
𝑘 )] 

Defining 𝑑 =
𝛼Δ𝑡

Δ𝑥2 
 and simplifying to obtain equation for all internal nodes: 

⇒ 𝑇𝑖,𝑗
𝑘+1 = 𝑇𝑖,𝑗

𝑘 + 𝑑[𝑇𝑖+1,𝑗
𝑘 + 𝑇𝑖−1,𝑗

𝑘 + 𝑇𝑖,𝑗+1
𝑘 + 𝑇𝑖,𝑗−1

𝑘 − 4𝑇𝑖,𝑗
𝑘 ] 

 
For two different materials: 

𝑑 = 𝑑(𝑥, 𝑦) = {
𝑑𝑠𝑡𝑒𝑒𝑙 , 0.2 ≤ 𝑥 ≤ 0.8 𝑎𝑛𝑑 1.2 ≤ 𝑦 ≤ 0.8
𝑑𝑏𝑟𝑖𝑐𝑘 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑑𝑠𝑡𝑒𝑒𝑙 = 𝛼𝑠𝑡𝑒𝑒𝑙(Δ𝑡/(Δ𝑥2 ))  where, 𝛼𝑠𝑡𝑒𝑒𝑙 = 1.88 × 10−5 𝑚2/𝑠 
𝑑𝑏𝑟𝑖𝑐𝑘 = 𝛼𝑏𝑟𝑖𝑐𝑘(Δ𝑡/(Δ𝑥2 ))  where, 𝛼𝑏𝑟𝑖𝑐𝑘 = 5.2 × 10−7 𝑚2/𝑠 

 F) Plot of results and comments (discuss how the results describe the physics and comment on any discrepancies or 
unexpected behaviours): 

 
Figure 1. Figure of obtained temperature distributions at times: 0, 10000, 50000 and 200000 seconds. 

 
The results shown in figure 1 show how the edges of the rod cool very quickly, and the core of the rod gradually 
reaches the same temperature over a larger amount of time. It also shows how the region of the beam with lower 
diffusivity (the brick) cools at a slower rate than the rest of the beam, remaining at higher temperatures for longer. 
After a period of 200,000 seconds (approximately 2 days), the entire rod reaches near 𝑇𝑓, the temperature of the 

fluid.  
 
Although this value seems abnormally high, it is expected due to the large cross-sectional area of the shape (1x1m). 
While this problem could be applied to more realistic scales of smaller dimensions, the temperature distribution 
would not show noticeable differences at different locations (i.e. would yield a flatter surface). 
 
It is also visible that there are no “sharp edges”; heat is transferred smoothly through the rod as expressed by the 
gradient in the colours and the smooth curve. Furthermore, the corners of the rod cool down the fastest. All of this is 
as we would expect from heat transfer theory.  

G) Other remarks (limits of the model, convergence problems, possible alternative approaches, anything you find 
relevant and important to mention): 

• The model can only be used for quite large cross sectioned rods. For too small rods, the temperature 
distribution is simply not visible as the heat transfer occurs too quickly. The model would still work, although 
it would not give much interesting information about the temperature distribution. – for very small cross-
sectional areas, space increment tiny, means time is a fraction of that so tiny increments. 

 

• Convergence/stability issue: The time step must be a given fraction of the step size to reach a stable 
solution. This means that if we want a highly precise mesh grid, we also require an even larger amount of 
time steps which can be very inefficient and unnecessary for the computer. In our code we have included a 
stability checking function, which tells if the code would reach a stable solution or not. This was set using the 
variable d, defined earlier where 𝑑 ≤ 0.25 for stability.  

 

• Alternative approach: To solve the convergence issues, we could have used an implicit method to solve our 
PDE such as the Crank-Nicholson method. However, this was not chosen, as it is far more inefficient 
computationally. 

 


